目录

表 1	项目概况	1
表 2	放射源	7
表 3	非密封放射性物质	8
表 4	射线装置	9
表 5	废弃物(重点是放射性废弃物)	10
表 6	评价依据	11
表 7	保护目标与评价标准	13
表 8	环境质量现状	18
表 9	项目工程分析与源项	20
表 10	辐射防护与安全措施	24
表 11	环境影响分析	29
表 12	辐射安全管理	45
表 13	结论与建议	57
表 14	审批	61

表1 项目概况

邛	[目名称		宁远县人	民医院	总核技术	利用改	扩建	项目	
建	设单位			宁迈	退人民	医院			
沒	人代表	欧阳旭俊	联系人	谢	群柏	联系申	包话	139	973484860
注	册地址		宁迈	记县舜	陵镇重4	华北路	1号		
项目	建设地点		宁远县	人民医	 三院外科	楼一楼	介入	室	
立项	[审批部门		/		批准	文号			/
	五术利用项 投资(万 元)	850	核技术 项目环 资 (万)	保投	85	书	是资 比	公例	10%
巧	ī目性质	□新到	建 ■改扩建	□其	它	Ļ	古地面 (m²		
	放射源	□销售		类 匚	III类□	□III 类	□IV	类 🗆	V类
	//X/3110/F	□使用	□Ⅰ类(图	医疗使	用) [Ⅲ类〔		类 □I	V 类□ V 类
	-16-13-1-1-2-16	口生产		Ħ	刮备 PET	「 用放射	 性茲	物	
应	非密封放 射性物质	□销售				/			
用 类		□使用			\Box Z	」口丙	•		
型		口生产				类 □II	I类		
	射线装置	□销售				类 □II	I类		
		■使用				类 □II	I类		
	其他				无				

1.1 核技术应用的目的和任务:

当今, X 射线影像诊断技术已经广泛应用于医学临床诊断工作。放射诊断是根据病人的病情需要对病人的身体某些部位或全身进行显像,拍出 X 光片或者保存数字影像以供医学临床诊断。医生需要 X 射线影像的指引下进行骨科复位、体内取异物、肿瘤的模拟定位工作。

本项目主要利用医用 X 射线装置 (DSA) 进行放射诊断和介入手术。

1.2 建设单位概况

宁远县人民医院是政府举办的一所二级甲等综合医院,是宁远县医疗技术指导中心、孕妇抢救治疗中心、"120"急救中心、农村合作医疗和城镇职工(居民)医保定点医院,卫生部首批"二级甲等医院"、"爱婴医院",湖南省首批明明白白看病"百姓放心医院"。中南大学湘雅一、二、三医院定点指导医院。

医院占地面积 7 万平方米,开设病床 625 余张。设感染科、儿科、妇产科、神经内科、消化内科、心血管内科等 26 个临床、医技科室及 16 个职能管理科室。百级层流手术年完成量约 6 千余台次。目前正在建设的"120"急救中心和内科住院大楼高 17 层,1.5 万平方米。医院在职职工 758 人,其中专业技术人员 669 人。正高职称 9 人,副高职称 85 人,中级职称 197 人。

1.3 项目由来

宁远县人民医院为了秉承"厚德、精医、奉献、惠民"的办医理念,以一流的服务、一流的环境、一流的设备、一流的技术,全心全意为群众提供一流的医疗服务。拟投资 850 万元在医院外科大楼一楼进行核技术利用改扩建项目建设。本次环评包含 1 台 II 类射线装置,为医用血管造影 X 射线机(以下简称 DSA)。为保护环境,保障周围公众健康,根据《中华人民共和国环境保护法》、《中华人民共和国环境影响评价法》以及《建设项目环境保护管理条例》(国务院令第 253 号),本项目应进行环境影响评价。根据《建设项目环境影响评价分类管理名录》(环境保护部第 44 号令),本项目环境影响评价报告文件形式为编制环境影响报告表。因此,宁远县人民医院委托重庆宏伟环保工程有限公司对拟开展的放射诊疗核技术利用扩建项目进行环境影响评价。

本项目 DSA 机房利用原有催乳室和洗衣被服库房进行改建,根据 2017 年 11 月 7 日现场踏勘实际情况,本次环评涉及的射线装置机房改建工作还未开展,新增设备还未购置。我公司人员在现场踏勘、收集有关资料的基础上,按照国家对伴有辐射建设项目环境影响评价技术规范的要求,编制了本项目的辐射环境影响报告表。

1.4 项目概况

- (1) 项目名称: 宁远县人民医院核技术利用改扩建项目
- (2) 建设地点:宁远县舜陵镇重华北路1号宁远县人民医院外科楼一楼介入室。

- (3) 建设性质: 改扩建
- (4) 建设单位: 宁远县人民医院
- (5) 投资:核技术总投资 850 万元,其中环保投资 85 万元
- (6) 建设规模:本次环评包含 1 台医用血管造影 X 射线机(II 类射线装置),位于外科大楼一楼介入室,设备情况见下表 1-1。

表 1-1 本项目射线装置情况一览表

序号	射线装置	型号	拟定参数	类 别	位置	数量	备注
1	医用血管造影 X 射线机	IGS330	1000mA; 125KV	II 类	外科大楼一楼介入室	1台	拟新购

1.5 劳动定员

本项目 DSA 介入工作人员共 6 名,其中从医院现有辐射工作人员中调配 3 名: 医师 2 名,技师 1 名; 外聘 3 名: 医师 1 名,技师 1 名。从事 DSA 介入手术的工作人员不从事其他放射工作。

1.6 项目组成情况

根据项目特点,本项目主要由主体工程、公用工程、环保工程三部分组成。项目组成情况见表 1-2 所示。

表 1-2 本项目主要工程依托关系表

序 号	项目	组成	依托关系
_		主体工程	
1	DSA 机房	共 1 间,位于外科大楼一楼,机房长×宽×高为7.50m×6.50m×4.3m,面积为 48.75m²,拟配备 1 台 DSA	利旧改造
\equiv		公用工程	
1	给水	院内供水管网	依托
2	排水	实行雨污分流; 医疗废水排放系统, 雨水排放系统。	依托
3	供配电	院内供配电系统	依托
4	通风	射线装置机房设置机械动力通风设施	新建
三		环保工程	
1	废气	新通风系统	新建
2	废水	无放射性废水, 实行雨污分流	依托

3	固废	已制定固废处理措施,医疗垃圾暂存间以及生活垃圾暂存间	依托
---	----	----------------------------	----

1.7 改建情况

DSA 机房及其辅助用房原为外科楼一楼的催乳室和洗衣被服库房,原有的房间四面墙体均为 240mm 实心砖,顶棚为 150mm 混凝土,门窗为普通门窗。

机房改建后用作 DSA 介入手术,改建后,机房尺寸为 7.50m×6.50m×4.3m,面积为 48.75m²,四面墙体为 240mm 实心砖+3mmPb 的硫酸钡,顶棚为 150mm 砼+2mmPb 的铅板。污物通道防护门和控制室防护门以及控制室防护窗均设置在机房南侧,机房大门位于机房北侧,设计铅当量均为 4mmPb。

1.8 保护目标和评价因子

1.8.1 环境保护目标

根据本项目周围环境敏感点分布情况,确定本项目环境保护目标为该医院从事放射诊疗的工作人员、机房周围活动的公众成员。

1.8.2 评价因子

根据本次评价的项目特点及项目实际情况,本项目主要影响为X射线、臭氧、氮氧化物。本项目评价因子主要为X射线。

1.9 医院现有核技术利用项目情况

1.9.1 现有射线装置情况

医院现使用 4 台 III 类射线装置,为 1 台 CT、2 台 DR、1 台数字胃肠机,上述射线装置的使用已于 2013 年 12 月 30 日申请取得了湖南省环境保护厅下发的《辐射安全许可证》(许可证编号:湘环辐证[00197])有效期至 2018 年 12 月 29 日。医院上述设备使用过程中,运行情况良好,无辐射安全事故发生。

医院现有射线装置的使用情况见表 1-3。

序 办证 备 装置名称 型号 类型 数量 位置 묵 情况 注 X射线电子计算 己办 医技楼一楼影像科 1 Lightspeedplus III类 1台 / 机扫描装置 证 X射线数字影像 已办 2 CXD-DMG85 III类 1台 医技楼一楼影像科 / 摄影系统 证

表 1-3 现有射线装置情况表

续表1 项目概况

3	X 射线数字影像 摄影系统	RevolutionXQ/i	III类	1台	医技楼一楼影像科	已办 证	/
4	数字胃肠 X 线机	PS800+	III类	1台	医技楼一楼影像科	已办 证	/

1.9.2 现有辐射工作人员情况

宁远县人民医院现有辐射工作人员 24 名。医院开展了辐射安全知识培训、个人 剂量监测和职业健康体检(详见附件七、附件八、附件九)。

1.9.3 辐射防护情况

根据宁远县人民医院提供的资料和现场踏勘可知,医院以上射线装置的实践活动 场所均采取了切实有效的辐射防护措施,机房辐射防护效能良好,未发现突出的环境 问题。

1.9.4 放射性废物排放情况

废气: 医院目前产生的废气,主要是射线装置机房工作曝光过程中,电离产生的少量氮氧化物及臭氧。射线装置机房均设置有机械通风装置,由 X 射线电离产生的氮氧化物和臭氧经过机械通风装置排出室外,对环境影响小。

1.10 医院原有核技术环评回顾

医院严格遵守《中华人民共和国放射性污染防治法》和《放射性同位素与射线装置安全和防护条例》等相关辐射防护法律、法规,配合各级环保部门监督和指导,辐射防护设施运行、维护、检测工作良好,在辐射安全和防护制度的建立、落实以及档案管理等方面运行良好。

- 1、医院已制定各设备操作规章制度,辐射防护和安全保卫制度、设备检修维护制度以及辐射事故应急预案等,并严格按照规章制度执行。
- 2、为加强对辐射安全和防护管理工作,医院已成立辐射安全与环境保护管理机构,明确辐射防护责任,并加强了对射线装置的监督和管理。
- 3、医院从事辐射的工作人员定期参加了环保部门组织的上岗培训(培训证都在有效期内),接受辐射防护安全知识和法律法规教育,提高守法和自我防护意识。辐射工作期间,辐射工作人员佩戴个人剂量计,接受剂量监测,建立剂量健康档案并存档。

- 4、医院放射性场所设置有电离辐射警示牌、报警装置和工作状态指示灯,都在正常工作状态。
- 5、医院对辐射装置的安全和防护状况进行年度评估,并于每年1月31日前向发证机关提交上一年度的评估报告。

综上所述, 医院现有辐射防护措施能够满足当前进行的核技术利用项目辐射防护要求。

本项目建成以后,宁远县人民医院共有1台Ⅱ类射线装置,4台Ⅲ类射线装置。

表 2 放射源

序号	核素名称	总活度(Bq)/ 活度(Bq)×枚数	类别	活动种类	用途	使用场所	贮存方式与地点	备注
以下无								

注: 放射源包括放射性中子源,对其要说明是何种核素以及产生的中子流强度(n/s)

表 3 非密封放射性物质

序号	核素 名称	理化性质	活动 种类	实际日最大 操作量(Bq)	日等效最大操 作量(Bq)	年最大用量 (Bq)	用途	操作方式	使用场所	贮存 方式
以下 无										

注日等效最大操作量和操作方式见《电离辐射防护与辐射源安全基本标准》(GB-18871-2002)

表 4 射线装置

(一)加速器:包括医用、工农业、科研、教学等用途的各种类型加速器

序号	名称	类别	数量	型号	加速粒子	最大能量 (MeV)	额定电流 (mA) / 剂量率 (Gy/h)	用途	工作场所	备注	
/无	/	/	/	/	/	/	/	/	/	/	

(二) X 射线机,包括工业探伤、医用诊断和治疗、分析等用途

序号	名称	类别	数量(台)	型号	最大管电压(kV)	最大管电流(mA)	用途	工作场所	备注
1	医用血管造 影 X 射线机	1 11 25 1 1 1 (38330) 1 175		125	1000	介入手术	外科大楼一楼介 入室	拟新增	
合计		1			1台Ⅱ类射线	装置			
	以下空白								

———— (三)中子发生器,包括中子管,但不包括放射性中子源

	なる	米印	粉具	型号	最大管电压	最大靶电	中子强度	用途	工作场	j	氟靶情况		备
序号	名称	类别	数量	空亏 	(kV)	流 (µA)	(n/s)	用述 	所	活度 (Bq)	贮存方式	数量	注
/	/	/	/	/	/	/	/	/	/	/	/	/	/

表 5 废弃物 (重点是放射性废弃物)

名称	状态	核素名称	活度	月排放量	年排放量	排放口浓度	暂存情况	最终去向
/	/	/	/	/	/	/	/	/

注: 1.常规废弃物排放浓度,对于液态单位为 mg/L,固体为 mg/kg,气态为 mg/m³;年排放总量用 kg。

^{2.} 含有放射性的废物要注明,其排放浓度、年排放总量分别用比活度(Bq/L 或 Bq/kg 或 Bq/m^3)和活度(Bq)。

表 6 评价依据

6.1 相关法律法规、部门规章及规范性文件

- (1)《中华人民共和国环境保护法》2014年4月24日修订,2015年1月1日执行;
- (2) 《中华人民共和国环境影响评价法》2016年7月2日修订, 2016年9月1日执行:
 - (3)《中华人民共和国放射性污染防治法》,2003年10月;
- (4)《建设项目环境保护管理条例》,国务院第 628 号令,2017 年 10 月 1 日实施;
- (5)《放射性同位素与射线装置安全和防护条例》(2014年7月29日修订),国务院第449号令,2005年9月14日;
- (6)《建设项目环境影响评价分类管理名录》国家环境保护部令第44号,2017年9月1日实施;
- (7)《放射性同位素与射线装置安全许可管理办法(2008 修订)》 国家环境保护部令第 3 号,2008 年 11 月 21 日;

法规 文件

- (8)《放射性同位素与射线装置安全和防护管理办法》环境保护部令第18号,2011年5月1日;
- (9)《产业结构调整指导目录》国家发展和改革委员会令第9号, 2013年修订:
 - (10)《放射工作人员职业健康管理办法》(卫生部令第55号);
- (11) 《建立放射性同位素与射线装置辐射事故分级处理和报告制度》环发 145 号, 2006 年;

续表 6 评价依据

6.2 评价技术规范

- (1)《建设项目环境影响评价技术导则 总纲》(HJ2.1-2016);
- (2)《辐射环境保护管理导则——核技术利用建设项目环境影响评价文件的内容和格式》(HJ 10.1-2016)。

6.3 评价技术标准

- (1)《电离辐射防护与辐射源安全基本标准》(GB18871-2002);
- (2) 《医用 X 射线诊断放射防护要求》(GBZ130-2013);
- (3) 《放射工作人员健康要求》(GBZ98-2017);
- (4)《医用 X 射线诊断受检者放射卫生防护标准》

技术

标准

(GBZ16348-2010):

- DZ10340-2010/,
- (5)《放射工作人员职业健康监护技术规范》(GBZ235-2011);
- (6)《工作场所有害因素职业接触限值 第一步部分 化学因素》 (GBZ2.1-2007)。

6.4 其他

- (1) 本项目电离辐射检测报告(鹏辐检【2017】191-02号)(附件三);
 - (2)辐射环境影响评价委托函(附件一):

其他

(3)《辐射防护》(第11卷,第二期,湖南省环境天然贯穿辐射水平调查研究,湖南省环境监测中心站,1991年3月)。

表 7 保护目标与评价标准

7.1 评价范围

根据本项目辐射源为能量流污染及其能量流的传播与距离相关的特性,结合《辐射环境保护管理导则-核技术利用项目 环境影响评价文件的内容和格式》(HJ 10.1-2016)的相关规定,并结合项目辐射装置射线传播与距离相关的特性,确定以本次环评设计的射线装置机房为边界外 50m 区域作为辐射环境的评价范围。

7.2 环境保护目标

7.2.1 环境保护敏感点

(1) 医院周围环境概况

宁远县人民医院位于宁远县舜陵镇重华北路 1 号,北侧紧邻金穗街,南侧紧邻九亿街,西侧紧邻重华路。

(2) 本项目选址及周围外环境敏感点

医院外科楼位于医院场地西北侧。北侧紧邻金穗街,约 20m 为居民楼,南侧约 25m 为内科楼,西侧约 10m 为重华路,约 30m 为居民楼,东侧约 80m 为急诊楼。

(3) 本项目机房选址概况

本次核技术扩建项目位于宁远县人民医院外科楼一楼介入室。

机房工作场所周围环境情况(以各机房为边界外 50m 区域作为辐射环境的评价范围)详见表 7-1。

续表 7 保护目标与评价标准

表 7-1 主要机房周围环境概况表

机房 名称	机房位置	-	方位	环境敏感点名 <u>称</u>	环境保护人群	影响人数	备注
		东	紧邻	<u>医院大厅,登</u> 记室	公众人员	约20人	电离辐射
		直	紧邻	控制室	放射工作人员	约3人	电离辐射
		1.53	约 25m	内科楼	公众人员	约 200 人	电离辐射
	外科楼	西	紧纽	道路	公众人员	约 25 人	电离辐射
DSA 机房	一楼介		约 30m	居民楼	公众人员	约150人	电离辐射
12.1.25	入室	韭	紧邻	道路	公众人员	约20人	电离辐射
		<u> 14</u>	约 20m	居民楼	公众人员	约100人	电离辐射
		2	<u></u> 送上	医生办公室	公众人员	约10人	电离辐射
		3	<u></u>	夯实土层	Ĺ	Ĺ	Ĺ

项目现场照片见附图一,项目所在地理位置图见附图二,医院总平面布置图见附图三,DSA 机房平面布置图见附图四,机房所在楼层平面布置图见附图五。

7.2.2 环境保护目标

根据本项目周围环境敏感点分布情况,确定本项目环境保护对象为该医院从事放射诊疗的工作人员、机房周围其它非辐射工作人员和公众成员。

7.3 评价标准

电离辐射相关标准

(1) 《电离辐射防护与辐射源安全基本标准》(GB18871-2002)

本标准适用于实践和干预中人员所受电离辐射照射的防护和实践中源的安全。

第 4.3.2.1 款,应对个人受到的正常照射加以限值,以保证本标准 6.2.2 规定的特殊情况外,由来自各项获准实践的综合照射所致的个人总有效剂量和有关器官或组织的总当量剂量不超过附录 B(标准的附录 B)中规定的相应剂量限值。不应将剂量限值应用于获准实践中的医疗照射。

第 B1.1.1.1 款,应对任何工作人员的职业照射水平进行控制,使之不超过下述限

续表 7 保护目标与评价标准

值:由审管部门决定的连续5年的年平均有效剂量(但不可作任何追溯性平均),20mSv 作为职业照射剂量限值。

结合拟使用的医用辐射装置的实际情况,确定本项目 DSA 的辐射工作人员的年有效剂量目标管理限值为职业照射的十分之二,即 4 mSv/a。

第 B1.2 款 公众照射

实践使公众中有关关键人群组的成员所受到的平均剂量估计值不超过下述限值: 年有效剂量,1mSv。

本项目公众人员的年有效剂量目标管理限值取公众照射的十分之一,即 0.1mSv/a 作为所有射线装置周边公众成员年有效剂量目标管理限值。

(2) 《医用 X 射线诊断放射防护要求》(GBZ130-2013)

本标准适用于医用诊断放射学和介入放射学实践。

第 5.1 款 X 射线设备机房(照射室)应充分考虑邻室(含楼上和楼下)及周围场所的人员防护于安全。

第 5.2 款 每台 X 射线机(不含移动式和携带式床旁摄影机与车载 X 射线机)应设有单独的机房,机房应满足使用设备的空间要求。对新建、改建和扩建的 X 射线机房,其最小有效使用面积、最小单边长度应不小于表 7-2 要求。

表 7-2 X 射线设备机房 (照射室) 使用面积及单边长度

设备类型	机房内最小有效使用面积 m²	机房内最小单边长度 m	
双管头或多管头 X 射线机 a	30	4.5	

第 5.3 款 X 射线设备机房屏蔽防护应满足如下要求:

- a) 不同类型 X 射线设备机房的屏蔽防护应不小于表 3 (表 7-3) 要求。
- b) 医用诊断 X 射线防护中不同铅当量屏蔽物质厚度的典型值参见附录 D。

表 7-3 不同类型 X 射线设备机房的屏蔽防护铅当量厚度要求

机房类型	有用线束方向铅当量 mm	非有用线束方向铅当量 mm
标称 125kV 以上的摄影机房	3	2
介入 X 射线设备机房	2	2

a 双按 GBZ/T 180 的要求。

续表 7 保护目标与评价标准

- c)应合理设置机房的门、窗和管线口位置,机房的门和窗应有其所在墙壁相同的防护厚度。设于多层建筑中的机房(不含项层)顶棚、地板(不含下方无建筑物的)应满足相应照射方向的屏蔽厚度要求。
- 第 5.4 款 在距机房屏蔽体外表面 0.3m 处,机房的辐射屏蔽防护,应满足下列要求(其检测方法及检测条件按 7.2 和附录 B 中 B.6 的要求):
- a) 具有透视功能的 X 射线机在透视条件下检测时,周围剂量当量率控制目标值应不大于 2.5 uSv/h; 测量时, X 射线机连续出束时间应大于仪器响应时间。
 - (3) 《放射工作人员的健康标准》(GBZ98-2002)

1、范围

本标准适用于所有从事内、外照射(包括在医疗机构、核电厂,含放射性的厂矿等工作)的人员,以及应用放射源的工作部门或单位及其授权的医疗机构和医师。

3、放射工作人员的健康标准

每一放射工作人员必须进行就业前或者操作前的医学检查,和就业后工作过程中的定期医学检查。未经就业前医学检查者,不得从事放射工作。

.

(4) 《医用 X 射线诊断受检者放射卫生防护标准》(GB16348-2010)

- 第 4.1 款医疗卫生机构应制定执业医师与医技人员、辐射防护负责人等培训计划,使其受到相应的辐射防护知识培训并取得放射工作人员证。医技人员还应取得相应的专业技能资质并承担制定的任务。
 - 第 5.5 款应特别加强对育龄妇女和孕妇、婴幼儿 X 射线检查的正当性判断。
 - 第 6.2 款应避免受检者同一部位重复 X 射线检查,以减少受检者受照剂量。
- 第7.1.2 款应为不同年龄儿童的不同检查配备有保护相应组织和器官的防护用品, 其防护性能不小于 0.5mm 铅当量。
 - (5)《工作场所有害因素职业接触限值 第一步部分 化学因素》(GBZ2.1-2007) 室内臭氧浓度限值: 0.3mg/m², 氮氧化合物浓度限值: 5mg/m²。

(6) 结论

本环评根据项目情况及周围环境, DSA 机房外表面 30cm 处周围剂量当量率水平

续表 7 保护目标与评价标准

控制值为 2.5 µSv/h。

DSA 属于 X 射线诊断装置,是介入手术辅助设备,手术过程中同时需要配置其他配套设备,因此机房应充分满足手术要求,参照 GBZ130-2013 中双管头的机房面积要求执行,以不小于 30m² 进行控制。

综合上述标准以及医院自身实际情况,DSA 介入操作辐射工作人员年剂量目标管理限值≤4mSv/a;公众人员取公众照射的十分之一,即 0.1mSv/a 作为所有射线装置公众成员年剂量目标管理限值。

根据上述标准,结合本项目拟使用医用辐射装置的实际情况,确定本项目的年剂量目标管理值要求以及污染物排放指标如下:

表 7-4 本项目剂量限值及污染物排放指标表

一、年剂量目标管理限值					
项目	年有效剂量约束限 值(mSv/a)		执行对象	本评价年有效剂量目标 管理限值(mSv/a)	
辐射工作人员	20		辐射工作人员	<u>介入手术医生:</u> ≤4 <u>其他辐射工作人员:</u> ≤2	
公众人员	1	1 非辐射工作人员、公众		≤0.1	
二、机房防护体	二、机房防护体表面控制值				
X 射线装置机房外辐射工作人员活动 机 及公众人员活动场所			机房防护体表面 30cm 处的周围剂量当量率≤2.5μSv/h		
三、机房面积要求					
DSA	机房		≥30m²; 最小单边长度≥	4.5m(参考)	
四、工作场所有	四、工作场所有害因素职业接触限值(第一部分化学有害因素)				
机房内气体浓度 臭氧限值: 0.3mg/m³; 氮氧化合物限值: 5mg/m³。			勿限值: 5mg/m³。		

8.1 辐射环境质量现状调查

1、项目环境辐射检测

受宁远县人民医院的委托,长沙市鹏悦环保工程有限公司于2017年11月7日对宁远县人民医院(N: 25°35′51.51″, E: 111°56′28.92″)的辐射医疗装置拟安装地周围的辐射环境进行了检测。

2、检测方案及质量保证

(1) 监测目的

该环境辐射现状监测的目的主要是为了了解项目地点的辐射水平,为辐射工作场所运行后对环境的影响提供依据。

(2) 监测依据

《电离辐射防护与辐射源安全基本标准》GB18871-2002;

《医用 X 射线诊断放射防护要求》(GBZ130-2013);

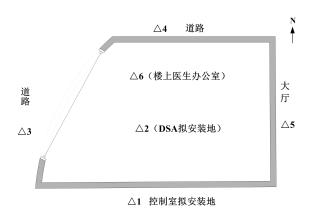
《辐射防护》(第 11 卷,第二期,湖南省环境天然贯穿辐射水平调查研究,湖南省环境监测中心站,1991 年 3 月)。

(3) 监测布点及质量保证

监测点位主要考虑机房附近人员停留较多,和能到达的区域。主要有:机房内、机房控制室及辅助机房、机房四周过道及人员能够达到的位置、机房楼上的相关区域等位置。监测布点见附件三,鹏辐(检)[2017]191-02号。

该项目测量所用的仪器性能参数均符合国家标准方法的要求,均有有效的国家计量部门检定的合格证书,并有良好的日常质量控制程序。监测人员均经具有相应资质的部门培训,考核合格持证上岗。数据分析及处理采用国家标准中相关的数据处理方法,按国家标准和监测技术规范有关要求进行数据处理和填报,并按有关规定和要求进行三级审核。本次监测所使用的仪器情况见表 8-1。

表 8-1 检测仪器及检定情况一览表


仪器名称	仪器型号	出厂编号	计量检定证书编号	有效日期
X、γ剂量率仪	RM-2030	6605	hnjln2017004-06	2018.02.12

3、检测结果及评价

监测数据详见附件三,鹏辐(检)[2017]191-02号。

1、外科大楼一层西南侧医用血管造影X射线机(DSA) 拟安装地:

1) 检测布点示意图:

备注:现状:西面墙体为普通玻璃,后期将会改建△为检测点位置。

2) 检测结果:

		地表γ辐射剂量率(nGy/h)					
序号				11 按 压			
			2	3	4	5	计算值
1	控制室拟安装地	99	98	96	98	99	98±1
2	DSA 拟安装地	101	99	100	99	98	99±1
3	道路	97	99	98	99	98	98±1
4	过道	103	104	103	102	103	103±1
5	大厅	101	100	102	101	100	101±1
6	楼上医生办公室	99	98	99	98	99	99±1

上述检测结果表明项目拟建址的地表γ辐射剂量率在98~103nGy/h(室内)之间, (室外)在98~101nGy/h之间,与湖南省永州市天然放射性水平调查研究室内 80.9~450.7nGy/h、室外71.1±307.0nGy/h相比,项目所在地辐射环境质量现状在正常浮动范围内,未见有较大的异常。因此可知:本次监测区域内天然贯穿辐射水平处于永州市天然贯穿辐射水平范围内。

9.1 施工期污染工序及污染物产生情况

本次宁远县人民医院医技楼核技术扩建项目的 DSA 机房主要由外科大楼一楼原有催乳室和洗衣被服库房进行改建,经过现场踏勘,机房改建工作未开展,新增设备未购置。本次扩建项目仅需对上述房间进行改建,因此本项目施工期主要为机房的装修和改造,污染因子有:噪声、扬尘、废水、固体废物等。

噪声: 主要来自于改造、装修及现场处理等。

废气: 主要为机械敲打、钻洞墙体等产生的扬尘。

废水: 主要为施工人员产生的少量生活废水, 无机械废水。

固体废物:主要为建筑垃圾、装修垃圾以及施工人员的生活垃圾。

本项目施工期环境影响随着施工期的结束而结束,施工期工程量小,施工期短,且均在院区内施工,对外界环境影响很小,不存在环保遗留问题。

9.2 射线装置营运期污染工序及污染物产生情况

9.2.1DSA

医院拟在外科楼一楼介入室新增1台DSA,属于II类射线装置。

1、工作原理

医用血管造影 X 射线机 (DSA) 是采用 X 射线进行摄影的技术设备。该设备中产生 X 射线的装置主要由 X 射线管和高压电源组成,见图 9-1。 X 射线管由安装在真空玻璃壳中的阴极和阳极组成。阴极是钨制灯丝,它装在聚焦杯中。当灯丝通电加热时,电子就"蒸发"出来,而聚焦杯使这些电子聚集成束,直接向嵌在金属阳极中的靶体射击。

靶体一般采用高原子序数的难熔金属制成。高电压加在X 射线管的两极之间,使电子在射到靶体之前被加速达到很高的速度,这些高速电子到达靶面为靶所突然阻挡从而产生 X 射线。成像装置是用来采集透过人体的 X 线信号的,由于人体各部组织、器官密度不同,对 X 线的衰减程度各不一样,成像装置根据接收到的不同信号,利用平板探测器将透过人体后已衰减的未造影图像的 X 线信号增强,再用高分辨率的摄像机对增强后的图像作一系列扫描。扫描本身就是把整个图像按一定的矩阵分成许多小方块,即象素。所得到的各种不同的信息经模/数(A/

D)转换成不同值的数字信号,然后存储起来。再把造影图像的数字信息与未造影图像的数字信息相减,所获得的不同数值的差值信号,经数/模(D/A)转制成各种不同的灰度等级,在监视器上构成图像。由此,骨骼和软组织的影像被消除,仅留下含有造影剂的血管影像,从而大大提高血管的分辨率。



图 9-1 DSA

2、系统组成及工作流程

(1) 系统组成

医用血管造影 X 射线机组成: Gantry, 俗称"机架"或"C 型臂", 由"L"臂、PIVOT、"C"臂组成,同时还包括了数字平板探测器、球管、束光器等部件;专业手术床; Atlas 机柜,该机柜由 DL、RTAC、JEDI 构成;球管和数字平板探测器分别通过各自的水冷机控制温度;图像处理系统。

该项目设备采用平板探测器 (FD) 技术成像: FD 技术可以即时采集到患者图像,对图像进行后期处理,轻松保存和传送图像。

DSA 技术是常规血管造影术和计算机处理技术相结合的产物,其基本原理和技术为: X 线穿过人体各解剖结构形成荧光影像,经影像增强器增强后为电视摄像管采集而形成视频影像。再经对数增幅和模/数转换形成数字影像。这些数字信息输入计算机处理后,再经减影、对比度增强和数/模转换,产生数字减影图像。

DSA 技术是常规血管造影术和计算机处理技术相结合的产物,其基本原理和技术为: X 线穿过人体各解剖结构形成荧光影像,经影像增强器增强后为电视摄像管采集而形成视频影像。再经对数增幅和模/数转换形成数字影像。这些数字信

续表9 项目工程分析与源项

息输入计算机处理后,再经减影、对比度增强和数/模转换,产生数字减影图像。

(2) 操作流程

介入手术辅助治疗操作流程(DSA 血管造影)

医院拟开展的介入手术有:动脉介入治疗、静脉介入治疗、门脉系统介入治 疗、心脏介入治疗、冠脉介入治疗、脑和脊髓血管介入治疗。

以脑动脉瘤患者微弹簧圈栓塞治疗为例, DSA 的减影大致程序见下图所示:

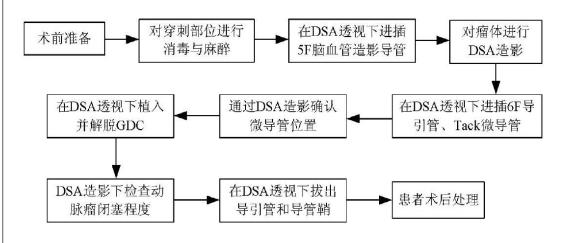


图 9-2 DSA 操作流程图

介入手术时,患者仰卧并进行无菌消毒,局部麻醉后,经皮穿刺动脉,送入 引导钢丝及扩张管与外鞘, 退出钢丝及扩张管将外鞘保留于动脉内, 经鞘插入导 管,推送导管,在X线透视下将导管送达病变部位,进行介入诊断,留X线片 记录,探查结束,撤出导管,穿刺部位止血包扎。在手术过程中,操作人员必须 在床旁并在X线导视进行。

3、工作负荷

射线装置名称

DSA

根据宁远县人民医院提供的资料,本项目 DSA 的工作负荷见表 9-1。

工作负荷 平均每人每次有效曝光时间 年最大曝光时间 摄影 100kV:1000mA ≤5s 25min 300 人次/年 透视 125kV;30mA 150h

30min

表 9-1 医用 X 射线装置工作负荷情况

根据检查项目, DSA 使用工作高压 30kV~120kV、工作电流 5mA~1000mA

续表9 项目工程分析与源项

不等。DSA 工作主要方式体现为摄影和透视,具体表现为:

- (1) DSA 摄影时,瞬时曝光,一般每次曝光时间短于 1s。每台介入手术大约曝光 4~5 次。
- (2) DSA 透视时,平均每台介入手术透视曝光的时间约 30min,其他情况下的透视时间平均为 20s。

4、污染因子

- (1)由X射线装置的工作原理可知,X射线是随机器的开、关而产生和消失。因此,该院使用的X射线装置在非诊断状态下不产生射线,只有在开机并处于出线状态时才会发出X射线。由于射线能量较低,不必考虑感生放射性问题。
- (2) X 射线与空气作用,产生少量的臭氧和氮氧化物废气。少量的有害气体直接与大气接触、不累积,自然逸散,对环境影响可忽略不计。
- (3) 医用 X 射线装置属清洁的物理诊断装置,在使用过程中自身不产生液态、固态等放射性废物,不存在放射性三废对环境的污染。

因此, 在开机期间, X 射线是污染环境的主要因子。

根据以上分析,本项目污染因子见表 9-3。

表 9-3 项目主要污染因子情况表

序 号	污染源	使用场所	主要污染因子
1	DSA	外科楼一楼介入室	X射线、臭氧、氮氧化物

表 10 辐射防护与安全措施

10.1 项目安全设施

根据现场实际情况,本项目利用外科大楼一楼原有催乳室和洗衣被服库房进行改建,整改工作还未开展,设备未购置,本项目射线装置机房辐射保护及安全措施情况如下:

10.1.1 辐射工作场所分区管理

按照《电离辐射防护与辐射源安全基本标准》(GB18871-2002)中规定,将辐射场所分为控制区和监督区,以便辐射安全管理和职业照射控制,该院放射性工作场所分区如下:

- (1) 控制区: DSA 机房以墙体和防护门为界, 机房内为控制区。在诊断和治疗设备的调试和日常诊疗过程中, 当处于诊疗状态时, 区内无关人员不得滞留。以辐射安全联锁和警示装置控制及严格的管理制度保障此区的辐射安全。
- (2) 监督区: DSA 机房的各辅助用房、走廊及其周围临近区域,在该区内需要对职业照射条件进行监督和评价。

10.1.2 DSA 机房的辐射防护与安全措施

防护门

(1) 根据医院提供的设计资料可知,本项目在外科大楼一楼有 DSA 机房 1间。射线装置机房设计防护屏蔽参数见下表:

机房 DSA 机房 位置 外科楼一楼介入室 机房尺寸(长×宽×高, m) $7.5 \times 6.5 \times 4.3$ 净面积(m²) 48.75 240mm 实心砖+3mmPb 的硫酸钡混凝土 东墙 240mm 实心砖+3mmPb 的硫酸钡混凝土 南墙 西墙 240mm 实心砖+3mmPb 的硫酸钡混凝土 北墙 240mm 实心砖+3mmPb 的硫酸钡混凝土 顶棚 150mm 砼+2mmPb 铅板 夯实土层 地面 4mmPh 防护窗

表 10-1 本项目射线装置机房屏蔽参数

上述机房四面墙体屏蔽材料采用密度不小于 1.65g/cm3 的实心砖作为屏蔽材

4mmPb

- 料,机房的地面及顶棚均采用密度不小于 2.35g/cm³ 的现浇混凝土,机房的防护设计厚度为 4mmPb;铅玻璃窗铅当量与防护门一致。
- (2) 机房机房内建设的穿越防护墙的导线、导管等采用"U"型和"Z"型,不影响墙体的屏蔽防护效果。
 - (3) 机房门外均设置工作指示灯和电离辐射警告标志。
- (4) X 射线机房充分考虑邻室(含楼上和楼下)及周围场所的人员防护安全。机房内布局合理,避免有用线束直接照射门、窗和管线口位置,未堆放与诊断装置无关的杂物,机房设置动力排风装置,并保持良好的通风。
 - (5)辐射工作人员均配置了个人剂量计。

10.1.2.1 安全操作及管理措施

- (1) X 射线设备应有能调节有用线束照射的装置,并应提供可标志照射野的灯光指示装置。
 - (2) X 射线管组件上应有清晰的焦点位置标志。
 - (3) 介入 X 射线设备应配备能阻止使用焦皮距小于 20cm 的装置。
- (4) 医院拟配置设备到位调试合格后,应委托有资质的单位对机房外的周围剂量当量率进行监测,保证机房的屏蔽能力满足要求。
- (5) 所有辐射工作人员均佩戴个人剂量计,并定期进行测读,建立个人剂量档案。
 - (6)制定规章制度、操作规程、应急处理措施,并张贴上墙。
- (7) 放射科工作人员应熟练掌握业务技术,接受放射防护的有关法律知识培训,满足放射工作人员岗位要求。
 - (8) X 射线机曝光时,应保证门灯联锁、门机联锁有效。
- (9) 介入放射用 X 射线设备应具有可准确记录受检者照射剂量的装置,并 尽可能将每次诊疗后患者受照射剂量记录在病历中。
- (10) X 射线设备机房放射防护安全设施在项目竣工时应进行验收检测,在使用过程中,应按规定进行定期检测。
- (11) 应用 X 射线检查应经过正当性判断。执业医师应掌握好适应证,优先选用非 X 射线的检查方法 。
- (12)加强对育龄妇女、孕妇和婴幼儿 X 射线检查正当性判断;严格控制使用剂量较大、风险较高的放射技术、除非有明确的疾病风险指征,否则不宜使

续表 10 辐射防护与安全措施

用 CT 进行健康体检。对不符合正当性原则的,不应进行 X 射线检查。

(13) X 射线设备根据工作内容,现场应配备工作人员、患者和受检者防护用品与辅助防护设施,其数量应满足开展工作的需要,对陪检者应至少配备铅防护衣;防护用品和辅助防护设施(铅橡胶,铅围裙、铅橡胶颈套、铅橡胶帽子)的铅当量应不低于 0.25mmPb;应为不同年龄儿童的不同检查,配备有保护相应组织和器官的防护用品,防护用品和辅助防护设施的铅当量应不低于 0.5mmPb。

10.1.3 受检者放射卫生防护

医院对受检者的防护与安全负责,应为受检者提供有效、安全的诊断检查。 医院已制定了一下防护措施:

- 1、医师应根据患者的病史、体格检查、临床化验等判断是否需要采用 X 射线检查,掌握好适应度。应考虑优先选用非 X 射线的检查方法,根据临床指征确认 X 射线检查是最合适的检查方法时方可申请 X 射线检查。
- 2、应特别加强对育龄妇女和孕妇、婴幼儿 X 射线检查的正当性判断。针对儿童、孕妇和育龄妇女应做检查时的特殊防护要求的做好防护措施。针对孕妇照射检查,要确保射线剂量在有效的范围内尽量降低。
 - 3、应避免受检者同一部位重复 X 射线检查,以减少受检者受照剂量。
- 4、应选择合适的 X 射线检查方法,制定最佳的检查程序和投照条件,力求在能够获得满意的诊断信息的同时,又使受检者所受照射减少至最低限度。在不影响获得诊断信息的前提下,一般应以"高电压、低电流、厚过滤"为原则进行工作。

10.1.4 防护用品

(1) 射线装置辐射防护防护设施要求见表 10-2。

表 10-2 个人防护用品和辅助防护设施配置要求

放射检查类	I.	作人员	患者和受检者		
型 	个人防护用品	辅助防护设施	个人防护用品	辅助防护设施	

续表 10 辐射防护与安全措施

介入放射学 操作	胶颈套、铅橡胶帽 子、铅防护眼镜	铅悬挂防护屏、铅防护 吊帘、床侧防护帘、床 侧防护屏 选配:移动铅防护屏风	铅橡胶性腺防护围裙(方形)或方巾、铅橡胶颈套、铅橡胶颈套、铅橡胶骨子、阴影屏蔽器具	_
-------------	---------------------	--	---	---

注: "一"表示不需要求。

(2) 由医院提供的资料可知,医院现有部分辐射防护用品,拟根据本次环评实际情况,建议建设单位增加相关防护用品。现有辐射防护用品及拟需新增辐射防护措施详见下表 10-3。

表 10-3 现有辐射防护用品清单

 说明	场所	防护用品名称	单位	数量
		铅围脖	件	5
		铅屏风	件	1
		铅帽子	顶	5
		铅手套	双	1
现有防护用	 影像科,手术室及	铅眼镜	副	5
品	牙科门诊	个人剂量计	个	25
		巡测仪	台	1
		患者铅橡胶性腺防护围裙 (方形)或方巾、铅橡胶颈 套、铅橡胶帽子、病人上身 防护屏	套	6
		个人剂量报警仪	台	1
		铅背心	件	6
需新增防护		铅围裙	件	6
用品	介入室、放射科	铅帽子	顶	4
/ IJ HH		铅眼镜	副	4
		铅屏风	个	2
		铅衣	套	6

续表 10 辐射防护与安全措施

10.2 三废治理
本项目运行过程中没有放射性废水、废气及放射性固体废物产生,工作过程
中空气的电离产生少量臭氧和氮氧化物通过通风系统排出车间,少量的臭氧和氮
氧化物的排放对环境影响小。

11.1 施工期环境影响分析

根据前节工程分析介绍,本项目施工期主要是房间的改造和装修。污染因子有:噪声、扬尘、废水、固体废物等。项目建设过程中,医院的医疗服务工作仍将正常进行。施工产生的污染特别是扬尘和噪声可对医院自身环境以及周围的环境带来较大影响。

施工期主要的污染因子有:噪声、扬尘、废水、固体废物等。

(1) 扬尘及防治措施

主要为房间的改造时机械敲打、钻洞墙体等产生的粉尘。为减小施工期间扬尘对外界环境的影响,施工单位应做到以下几点:加强施工现场管理,应进行适当的加湿处理。

(2) 废水及防治措施

施工期间产生的废水主要表现为施工人员的生活污水。生活污水依托医院的排水系统,进入市政污水网管。

(3) 噪声及防治措施

主要来自于机房内装修及现场处理等。通过选取噪音低、振动小的设备操作等,并合理安排施工时间等措施能减轻对外界的影响。

(4) 固体废物及防治措施

主要为建筑垃圾、装修垃圾以及施工人员产生的生活垃圾。施工期产生的固体废物应妥善处理,无回收价值的建筑废料统一收集后,运输至合法堆场堆放。 生活垃圾以及装修垃圾经统一收集后交由市政环卫部门处理。

本项目工程量小,施工期短,对外界的影响是暂时的,随着施工期的结束, 影响也将消失。通过采取相应的污染防治措施后,本项目对外界的影响小。

11.2 射线装置营运期环境影响分析

11.2.1 机房使用面积分析

本项目所涉及机房设计使用面积汇总如表 11-1 所示。

表 11-1 机房设计使用面积一览表									
序号	名称	位置	长×宽×高(m)	机房面积(m²)	面积标 准要求 (m ²)	单边长 度要求 (m)	是否满足要求		
1	DSA 机房	外科楼一 楼介入室	7.5×6.5×4.3	48.75	≥30	≥4.5	是		

由表 11-1 可知, DSA 机房使用面积均满足相应标准的要求。

11.2.2 射线装置辐射环境影响分析

11.2.2.1 DSA 辐射环境影响分析

1、机房设计情况

DSA 机房内空尺寸为: 7.5m×6.5m×4.3m, 机房面积为 48.75m²。机房的四面墙体均为 240mm 实心砖+30mm 硫酸钡混凝土, 顶棚为 150mm 砼+2mmPb 铅板, 观察窗、防护门均为 4mm 铅当量。

2、屏蔽防护效能核实

(1) 核实建筑物屏蔽效能采用的主要公式

机房辐射场由三种射线组成: 主射线、散射线、漏射线。

①主射线:

$$H = \frac{H \times q \times U}{K \times R^2}$$
 (1)

$$H = G \times I \times 60 \tag{2}$$

$$G = 1.222 - 5.664 \times 10^{-2} \times kV + 1.227 \times 10^{-3} \times kV^2 - 3.136 \times 10^{-6} \times kV^3$$
 (3)

式中: K——减弱倍数;

H——血管造影系统额定工作条件下, X 线的输出率(Sv/h);

I——血管造影系统额定电流(mA):

 \dot{G} ——血管造影系统发射率,本次环评选取透视模式下,最高输出功率时 X 射线管电流与 X 射线管电压的组合情况进行核算,即管电压取值为 125kV,管电流取值为 30mA,此时 DSA 的发射率为 7.19mGy /mA.min;本次环

续表 11 环境影响分析

评选取拍片模式下,最大恒定输出功率时,管电压取值为 100kV,电流为 1000mA, 此时 DSA 的发射率为 4.692mGy /mA.min。(Sv/Gy=1)

H ——屏蔽体外 30cm 处周围剂量当量率(Sv/h);

R——参考点距离(m);

q----居留因子(取1)

U----定向因子(取1)

②散射线:

$$H = \frac{H \times \alpha \times q \times S}{K \times R^2 \times r^2}$$
 (4)

式中: α——人体散射系数, 0.0016/400cm²。

s——散射面积,取 400cm²。

R——参考点距离(m)。

r---源皮距, 1m。

③漏射线

$$\overset{\bullet}{H} = \frac{H_1 \times q}{K \times R^2} \tag{5}$$

式中: H_1 ——X 漏射剂量率(<1mGy/h);

4)厚度:

$$d=TVLlogK$$
 (6)

d----屏蔽材料厚度(cm)

⑤散射能量

$$E_{\gamma'} = \frac{E_0}{1 + \frac{E_0}{m_0 c^2} (1 - \cos \theta)}$$
 (7)

式中: $E_{\gamma'}$ ——散射光子的能量(MeV); E_0 ——入射光子的能量(MeV); m_0c^2 ——电子静止能量(MeV);

*θ*______散射角 (°)。

续表 11 环境影响分析

(2) 核实建筑屏蔽效能采用的有关参数

由于 X 射线装置在实际应用中并不会满负荷运行,在考虑正当性及最优化原则的基础上,结合以往验收监测经验,选取工作模式为透视模式下,最高输出功率时 X 射线管电流与 X 射线管电压的组合情况进行核算,即管电压取值为125kV,管电流取值为30mA;工作模式为拍片模式时,最大恒定输出功率时,管电压取值为100kV,电流为1000mA 两种情况对 DSA 机房的屏蔽防护进行估算。

另外,本评价按照国家标准和相关规定要求,确定机房墙体、门和观察窗外表面 0.3m 处,楼上层离地 1m 处,楼下层离地 1.7m 处空气比释动能率均按 2.5μSv/h 进行估算。

表 11-2 居留因子 q

全部居留 q=1	工作室、办公室、候诊室、居住区等常有人居留的地方
部分居留 q=1/4	公共走廊、人操纵的电梯、无人看管的停车场等有时有人居留的地方
偶然居留 q=1/16	公共浴室、厕所、少量行人车辆通过的地方

(3) 建筑物屏蔽墙厚的确定原则

在计算散射和泄漏辐射所需的屏蔽厚度时,如果两者的厚度相差大于一个十分之一值厚度,则其中较厚的一个厚度,即可作为次级防护屏障的厚度。如若两者的厚度相差不到一个十分之一值厚度,那么在其中较厚的一个厚度上再添加一个半值厚度,作为总的次级防护屏障厚度。

(4) 计算参数

该项目 DSA 机房用房独立,本次环评 X 射线出线口设置在机房中线交点处,DSA 工作模式为透视模式时,90°散射角的散射线能量为 100 kV,漏射线能量约 125kV,电流为 30mA;工作模式为拍片模式时,90°散射角的散射线能量为 84 kV,漏射线能量约 100kV,电流为 1000mA。人体散射系数:

0.0016/400cm²; 散射面积 s=400cm²; 源皮距: 1m。机房建筑屏蔽材料常用材料为混凝土、砖、铅等,其密度分别为:实心砖密度 1.65g/cm³,混凝土密度 2.35g/cm³,铅密度 11.34g/cm³。计算参数见表 11-3。

续表 11 环境影响分析

表 11-3 计算参数

工作模式	额定电压 (kV)	电流(mA)	能量(kV)		十值层	
透视	125	30	主射线 漏射线	125	铅: 0.90mm 混凝土: 6.4cm 页岩砖: 9.12cm 钡水泥: 4.30cm	
12 TX			散射线	100	铅: 0.84mm 混凝土: 5.5cm 页岩砖: 7.83cm 钡水泥: 3.69cm	
L. I	100	1000	主射线 漏射线	100	铅: 0.84mm 混凝土: 5.5cm 页岩砖: 7.83cm 钡水泥: 3.69cm	
拍片	100		散射线	84	铅: 0.62mm 混凝土: 4.15cm 页岩砖: 5.92cm 钡水泥: 2.79cm	

(5) 核算结果

医院 DSA 核算结果见表 11-4

表 11-4 DSA 机房屏蔽核算结果

墙体名称	参考点 距离 (m)	计算厚度		设计厚度	设计厚度下 瞬时剂量率 (µSv/h)	是否满足 屏蔽厚度
东墙(医生走	4.44	透视	218mm 实心砖	240mm 实心砖 +3mmPb 硫酸 钡混凝土	0.0001	是
廊)散漏射		拍片	225mm 实心砖		0.0001	
南墙(控制室)	3.04	透视	243mm 实心砖	240mm 实心砖 +3mmPb 硫酸 钡混凝土	0.0003	是
散漏射		拍片	244mm 实心砖		0.0001	
西墙(道路)散	3.54	透视	233mm 实心砖	240mm 实心砖	0.0003	是
漏射		拍片	237mm 实心砖	+3mmPb 硫酸 钡混凝土	0.0001	疋
北墙(设备间)	2.04	透视	226mm 实心砖	240mm 实心砖 +3mmPb 硫酸 钡混凝土	0.0002	是
散漏射	3.94	拍片	231mm 实心砖		0.0001	
顶棚(医生办公	公 4	透视	158mm 砼	150mm 砼 +2mmPb 铅板	0.006	是
室)散漏射		拍片	163mm 砼		0.002	上
防护大门(缓冲	3.94	透视	2.4mmPb	4mmPb	0.02	是
区)散漏射	3.74	拍片	2.5mmPb	Tillill U	0.01	

续表 11 环境影响分析

控制室防护门1	3.04	透视	2.5mmPb	4mmPb	0.03	是
(控制室)散漏 射		拍片	2.6mmPb		0.03	
控制室防护门2 (控制室)散漏		透视	2.5mmPb	4mmPb	0.03	是
(控制至) 取納 射		拍片	2.6mmPb		0.03	
防护窗(控制 室)散漏射		透视	2.5mmPb	4mmPb	0.03	是
		拍片	2.6mmPb		0.03	

注: ①楼上屋顶计算位点为离二楼地板 1m 处,即 R=4.3-1.3+1=4m; ②楼下为夯实土层

(6) 机房屏蔽效能评估

由表 11-4 表可知,核算墙体外的瞬时剂量小于 2.5μSv/h,DSA 机房的四周墙体、天棚、门窗的设计厚度能够满足要求,DSA 机房的屏蔽可以满足《电离辐射防护与辐射源安全基本标准》(GB18871-2002)和《医用 X 射线诊断放射防护要求》(GBZ130-2013)的要求。在评价范围内的敏感点受 X 射线装置运行时的影响很小,环境可接受。

3、机房内通风

DSA 运行时会产生少量的臭氧和氮氧化物,因此 DSA 机房需要良好的通风,以降低臭氧浓度。根据医院实际情况,医院 DSA 机房设计采用排风换气装置,并用空调辅助通风,排风口远离敏感点及空调进风口,机房内通风良好。在此基础上,排放至室外的有害气体经空气稀释,将很快恢复到原来的空气浓度水平,O3的分解时间不到 10 分钟,能满足环境空气质量标准。

11.3 职业照射人员与公众附加年有效剂量

X-γ射线产生的外照射人均年有效当量剂量按下列公式计算:

$$H_{F,r} = H^*(10) \times T \times t \times 0.7 \times 10^{-3} (mSv)$$
 (8)

其中: H_{Er}—X 或γ射线外照射人均年有效当量剂量, mSv

H*(10): X 或γ射线周围剂量当量率, μSv/h;

T: 居留因子:

t: X 或γ射线照射时间, h。

11.3.1 DSA 附加年有效剂量估算

医院现有 24 名辐射工作人员..本项目 DSA 介入手术暂定从现有辐射工作人员中调配医师 2 名, 技师 1 名; 拟新增医师 1 名, 技师 1 名, 护师 1 名。工作场

所为外科楼一楼介入手术室, 医院年进行手术台数总约300台次/年。

(1) 手术室医护人员

根据医院提供资料,医院 DSA 的辐射工作人员拟配置为专职辐射工作人员,不从事其他 X 射线装置的操作。因此, DSA 辐射工作人员的个人受照剂量仅来自源于操作 DSA 所受剂量。

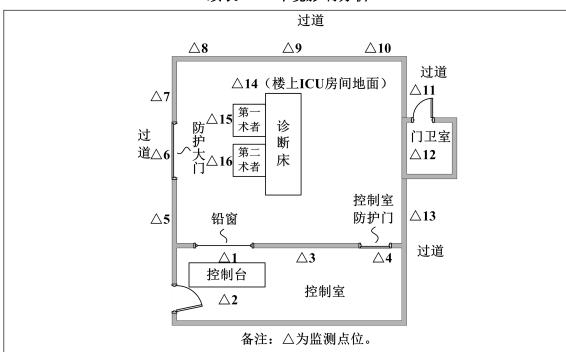

介入治疗工作人员受到的辐射主要来自在机房内床旁操作时受到的照射,受到的剂量相对较大。本环评通过类比引用工作负荷与人员配备情况与宁远县县人民医院相接近的攸县人民医院于 2015 年 4 月 13 日对的 DSA 机房辐射环境现场监测数据(鹏辐(监)[2015]275 号)对本项目 DSA 介入治疗操作人员进行剂量估算。本次类比主要引用在介入手术(透视)治疗过程中,位于手术操作位处医生的瞬时周围剂量当量率最大值。该值主要与监测工况(即开机监测条件)、手术类型相关,因此本次数据类比可行。

表 11-7 类比设备与本项目 DSA 对比情况

项目 名称	攸县人民医院	本项目
生产厂家/设备型号	飞利浦/FD20	<u>IGS330</u>
最大管电压/最大管电流	125kV/1000mA	125kV/1000mA
手术类型	心血管手术	以心血管手术为主
	0.5mm 铅当量的悬吊铅玻璃	0.5mm 铅当量的悬吊铅玻璃
F-3 - # 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	以及床侧铅橡胶挂帘+穿戴	以及床侧铅橡胶挂帘+穿戴
屏蔽防护	不小于 0.35mm 铅当量的铅	不小于 0.35mm 铅当量的铅
	防护衣	防护衣

监测布点示意图如下:

续表 11 环境影响分析

监测结果见下表:

表 11-8 攸县人民医院 DSA 机房现状监测表

点位编号	监测点描述	周围剂量当量	Ł率(μSv/h)
二 二 二 二 二 二 二 二 二 二	一种点型	摄影	透视
	监测条件	摄影: 75kV, 150mA	透视: 76kV, 5.7mA
Δ1	铅窗表面	0.09	0.12
△2	工作人员操作位	0.11	0.10
△3	墙表面 30cm	0.13	0.11
△4-1	控制室防护门上门缝表面 30cm	0.12	0.13
△4-2	控制室防护门左侧表面 30cm	0.11	0.10
△4-3	控制室防护门中间表面 30cm	0.13	0.09
△4-4	控制室防护门右侧表面 30cm	0.11	0.11
△4-5	控制室防护门下门缝表面 30cm	0.13	0.13
△5	墙表面 30cm	0.12	0.11
△6-1	防护大门上门缝表面 30cm	0.11	0.12

续表 11 环境影响分析

△6-2	防护大门左侧表面 30cm	0.12	0.13
△6-3	防护大门中间表面 30cm	0.11	0.11
△6-4	防护大门右侧表面 30cm	0.12	0.12
△6-5	防护大门下门缝表面 30cm	0.13	0.11
△7	墙表面 30cm	0.12	0.10
△8	墙表面 30cm	0.11	0.09
△9	墙表面 30cm	0.13	0.10
△10	墙表面 30cm	0.12	0.10
△11	墙表面 30cm	0.12	0.11
△12	墙表面 30cm	0.11	0.10
△13	墙表面 30cm	0.10	0.12
△14	楼上 ICU 房间地面	0.10	0.11
△15-1	第一术者操作位头部	_	121
△15-2	第一术者操作位胸部	_	104
△15-3	第一术者操作位腹部	_	106
△15-4	第一术者操作位腿部	_	78.5
△15-5	第一术者操作位足部	_	44.1
△16-1	第二术者操作位头部	_	98.6
△16-2	第二术者操作位胸部		83.4
△16-3	第二术者操作位腹部		80.7
△16-4	第二术者操作位腿部		44.7
△16-5	第二术者操作位足部	_	43.0
友注. 凹	上检测粉据均未扣除太底 0.00uSv/b		

备注:以上检测数据均未扣除本底 0.09μSv/h。

由上表可知,介入医生在介入手术过程中无防护的情况下受到的最大周围剂量当量率为 121μSv/h (第一术者操作位头部),每台介入手术的时间约为 30min,则每台手术中,介入医生受到的剂量值为 60.5μSv/台。根据医院提供资料,医院年进行介入手术台数总约 300 台次/年,则床侧曝光时,操作人员位置人均年有效剂量估算值为 18.15mSv。另外 DSA 设备自带有不小于 0.5mm 铅当量的悬吊

铅玻璃以及床侧铅橡胶挂帘,同时医生穿戴不小于 0.35mm 铅当量的铅防护衣在床旁操作,在此操作条件下,铅的半值层厚度为 0.27mm,所以在 0.85mmPb 的防护下医生实际所受的剂量要减弱 8.8 倍,因此介入治疗工作人员年有效剂量不超过 2.06mSv,低于 4mSv 的剂量管理目标值。按照医院现有年介入治疗台次和从事介入治疗医生数量的情况,医院介入治疗医生的年受照剂量不超过评价年剂量目标管理限值要求。

为进一步减少介入医生的受照时间,医务工作人员在进行介入手术时,应尽可能采用小视野,穿戴防护用品(铅衣服、铅背心、铅手套、铅帽、铅眼镜),并充分利用专用的移动式屏蔽物(悬挂式铅玻璃、铅帘等),利用医院配置的防护设施(悬挂式铅玻璃、铅帘等)做好自身的防护,同时,医院应对介入医生采取轮岗方式的管理措施,根据医院实际需求,相应增加介入医生的岗位人数,控制个人的受照剂量满足项目年剂量目标管理限值的要求。

同时,医院应做好介入治疗手术医生的工作量登记及统计工作,合理安排工作时间及强度;辐射工作人员应正确佩戴个人剂量计,定期做个人剂量监测,保证其受照剂量低于 4mSv/a,满足本评价的辐射工作人员年剂量目标管理限值及《电离辐射防护与辐射源安全基本标准》(GB18871-2002)剂量限值要求。

因此按照医院现有年介入治疗台次和从事介入治疗医生数量的情况,医院介入治疗医生的年受照剂量不超过评价年剂量目标管理限值要求。届时,根据医院发展情况,如需增加手术台数,则应根据实际情况,增加相应的介入治疗医生,以满足相关标准要求。

(2) 控制室辐射工作人员

根据医院提供资料,宁远县人民医院使用 DSA 进行介入手术治疗的工作负荷约 6 人次/周,年工作为 50 周,平均每次进行手术时 DSA 有效开机时间平均约为 30min,年有效开机时间约为 150h。控制室操作人员位于控制室内。根据前节计算,在控制室防护门的瞬时剂量估算值为 0.03 µSv/h,可计算出控制室内工作人员年附加有效剂量最大约为 0.003 mSv/a,低于评价标准 2mSv 年剂量目标管理限值要求。

(3) 公众成员剂量估算

公众成员出现的场所主要为 DSA 机房外的缓冲间和楼上办公室,其居留因 子取 1/4,根据前节计算,在公众成员所受的瞬时剂量估算最大值为 0.02μSv/h, 医院有 1 台 DSA,工作时间按 150h 来计算,则公众成员所受的最大年附加有效 剂量为 0.0007mSv/a,小于本评价年剂量目标管理限值 0.1mSv/a,满足《电离辐射防护与辐射源安全基本标准》(GB18871-2002)的要求。

11.2.4 对敏感点的影响分析

根据根据上述分析,机房屏蔽体外 30cm 处的周围剂量当量率低于 2.5µSv/h,满足评价标准要求。根据核算结果可知, DSA 机房的辐射工作人员年附加有效剂量低于评价标准 4mSv 年剂量目标管理限值要求,从剂量估算结果来看,机房外活动的公众成员年附加有效剂量低于 0.1mSv/a,满足《电离辐射防护与辐射源安全基本标准》(GB18871-2002)的要求。废气的浓度远远低于国家标准要求,对机房外环境影响很小,因此对医院内其他区域的影响也很小。

本项目的主要环境敏感点为射线装置机房所在的大楼周边 50m 范围内的院区建筑、居民楼、射线装置运行时对其产生的辐射影响很小,对更远的敏感点产生的影响将更小,环境敏感点可接受。

11.4 对敏感点的影响分析

根据上述分析,机房屏蔽体外 30cm 处的周围剂量当量率低于 2.5μSv/h,满足评价标准要求;根据核算,射线装置运行后对周围公众成员的年附加有效剂量低于 0.1mSv/a,满足评价标准要求;废气的浓度远远低于国家标准要求,对外环境影响很小对机房外环境影响很小,因此对医院内其他区域的影响也很小。

机房外,本项目用房最近敏感点为北侧的居民楼,射线装置运行时对其产生的辐射影响很小,对更远的敏感点产生的影响将更小,环境敏感点可接受。

11.5 选址合理性及平面布局合理性分析

11.5.1 选址合理性分析

按照《电离辐射防护与辐射源安全基本标准》(GB18871-2002)关于"源的选址与定位"规定,国家只对"具有大量放射性物质和可能造成这些放射性物质大量释放的源"应考虑场址特征的规定,对其它源的选址未作明文规定。本项目在

正常运行和事故工况下,均不会造成大量放射性物质释放。因此,国家有关标准和文件对拟建项目的择址未加明确限制。

- ① 根据建设单位提供的资料和评价单位现场踏勘,项目场地内未发现滑坡、坍塌、地裂等不良地质灾害现象,场地现状稳定性好,水文地质条件简单。
 - ② 根据现状监测结果,场址的辐射环境质量状况良好,有利于建设。
 - ③ 项目运行后对周围环境的辐射影响满足评价标准的要求,环境可以接受。
- ④本项目机房远离医院内及周围环境敏感点,有利于辐射防护。项目营运期产生的电离辐射、废水、废气、固体废物等均得到有效治理,达标排放对环境影响小。

因此,从环境保护角度分析,本项目选址可行。

11.5.2 布局合理性分析

本项目位于医院外科楼一楼介入室。根据现场踏勘,介入室位于一楼西北角。 根据平面布置可知,本项目辐射工作场所相对远离周围环境敏感点。各设备均设置了机房和控制室,总体用房与其他科室用房分开,射诊疗区和非放射诊疗区分开,方便病人诊疗和医生办公,且放射诊疗区置于人流不密集角落里,能更好的保护病人及医院工作人员的安全。

从环境保护角度分析,项目工作场所布局合理。

11.6 实践正当性分析

按照《电离辐射防护与辐射源安全基本标准》(GB18871-2002)中关于辐射防护"实践的正当性"要求,对于一项实践,只有在考虑了社会、经济和其他有关因素之后,其对受照个人或社会所带来的利益足以弥补其可能引起的辐射危害时,该实践才是正当的。

DSA 对保障健康、拯救生命起到了重要的作用。项目营运以后,建设单位 将为病人提供一个更加优越的诊疗环境,具有明显的社会效益。此外,通过核算, 该项目屏蔽和防护措施符合要求,对环境的影响也在可接受范围内。

因此,本项目实施,对受电离辐射照射的个人和社会所带来的利益远大于其引起的辐射危害,项目符合《电离辐射防护与辐射源安全基本标准》

(GB18871-2002) 中辐射防护"实践的正当性"的原则与要求。

11.7 产业政策符合性分析

DSA 的配置为疾病诊断、寻找病灶部位、制订治疗方案及治疗疾病提供了科学依据和手段。建设单位在加强管理 DSA 后,其产生的影响均满足相关国家法律、法规和标准的要求,不会给所在区域带来环境压力。同时,本项目属于中华人民共和国国家发展和改革委员会令第 21 号《产业结构调整指导目录(2011 年本)》(2013 年修正)鼓励类—鼓励类中新型医用诊断医疗仪器设备、微创外科和介入治疗装备及器械、医疗急救及移动式医疗装备、康复工程技术装置、家用医疗器械、新型计划生育器具(第三代宫内节育器)、新型医用材料、人工器官及关键元器件的开发和生产,数字化医学影像产品及医疗信息技术的开发与应用。项目符合国家相关法律法规和政策的规定,符合国家产业政策。

11.8 事故影响分析

11.8.1 事故风险类型

医院使用医用 X 射线装置开展辐射诊疗工作,将会产生不同的事故。医院应按照各种规章制度的要求,严防各种事故的发生。当发生事故后,应按照应急预案的要求进行补救,加强应急响应准备和事故应急演练,根据《放射源同位素与射线装置安全和防护条例》(国务院令第 449 号),辐射事故从重到轻分为特别重大辐射事故、重大辐射事故、较大辐射事故和一般辐射事故四个等级,见下表

表 11-11 国务院令第 449 号辐射事故等级分级一览表

事故等级	危害结果
特别重大辐射事故	射线装置失控导致 3 人以上(含 3 人)急性死亡。
重大辐射事故	射线装置失控导致2人以下(含2人)急性死亡或者10人以上(含
里八佃剂 爭以	10人)急性重度放射病、局部器官残疾。
较大辐射事故	射线装置失控导致9人以下(含9人)急性重度放射病、局部器官残
权人抽剂 争以	疾。
一般辐射事故	射线装置失控导致人员受到超过年剂量限值的照射。

根据《实用辐射安全手册》(第二版)(丛慧玲,北京:原子能出版社)急性放射病的发生率以及急性放射病的死亡率与辐射剂量的关系,见表 11-12。

表 11-12 急性放射病的发生率、死亡率与辐射剂量的关系

辐射剂量/ Gy	急性放射病发生率/%	辐射剂量/Gy	死亡率/%
0.70	1	2.00	1

续表 11 环境影响分析

0.90	10	2.50	10
1.00	20	2.80	20
1.05	30	3.00	30
1.10	40	3.20	40
1.20	50	3.50	50
1.25	60	3.60	60
1.35	70	3.75	70
1.40	80	4.00	80
1.60	90	4.50	90
2.00	99	5.50	99

根据表 11-11 和表 11-12,本项目射线装置可能发生的辐射事故等级见表 11-13。

表 11-13 本项目的环境风险因子、潜在危害及事故等级

	环境风 可能发生辐射事故		危害结果	事故
表直石协	险因子	的意外条件	ル舌	等级
DSA- II 类射线装置	X射线	①有人误入正在运行的射线装置机房;②有人未撤离机房外面人员启动设备;③检修、维护人员误操作造成误照射;④辐射工作人员未穿铅衣进行手术。		一般辐射事故

本项目所有装置均属 X 射线装置,对于 X 射线装置,当设备关机时不会产生 X 射线,不存在影响辐射环境质量的事故,只有当设备开机时才会产生 X 射线等危害因素,最大可能的事故主要有三种:

- (1) 安全连锁装置或报警系统发生故障状况下,人员误入正在运行的射线装置辐照室;
- (2)工作人员或病人家属还未全部撤离辐照室,外面人员启动设备,造成有 关人员被误照;
 - (3) 检修、维护人员误操作造成误照射;
 - (4)辐射工作人员未穿铅衣进行手术(介入手术)。

11.8.2. 本项目辐射事故危害及对敏感点的影响

根据有关研究调查,人员受到照射在 0.25Gy 以下时,症状不明显,在 0.5Gy 以下,少数受照者出现头晕、乏力、失眠、食欲减退及口渴等。

本项目的机房是按照设备在额定工况下运行(DSA、放射诊疗设备)和无屏蔽的情况下进行辐射防护屏蔽的,设备发生各种事故时其射线能量不会超过额定能量,因此,发生上述事故时均在机房内,事故发生后对机房外周围环境敏感点的影响与正常工况下相比,无其他附加影响。根据环境影响分析,项目各设备运行对周围环境敏感点的影响满足评价标准的要求,环境敏感点可以接受。

11.8.3 DSA 潜在危险及辐射事故预防处理措施

1、DSA 潜在危险及预防处理措施

(1) 工作状态指示灯失效

工作状态指示灯失效, DSA 机处于出线状态, 人员误进入机房而受到误照射。

预防处理措施:按操作规程定期对各个联锁装置进行检查,发现故障及时清除,严禁在警示灯失效的情况下违规操作。

(2) 人员留在机房内未作防护

工作人员进入机房后,未全部撤离,仍有人员滞留在机房内,且没有采取辐射防护措施,放射设备开始出线后,滞留人员受到不必要的照射。

防治措施:撤离机房时清点人数,必须按程序对机房进行全视角搜寻,对滞留机房内的无关人员强行劝离。有外来人员进入时,工作人员应根据情况,采取急停或相应措施,阻止外来人员受到误照射。

(3) 人误

由于工作人员缺乏防护知识,安全观念淡薄、无责任心;违反操作规程和有关规定,操作失误;管理不善、领导失察等,是人为造成辐射事故的最大原因。特别是对育龄妇女、孕妇、儿童等敏感人群照射前,没有按照规定告知、说明或者没有对敏感器官进行必要的屏蔽防护,造成辐射事故。

防治措施:辐射工作人员必须加强防护知识培训,提高防护技能,避免犯常识性错误;加强职业道德修养,增强责任感;严格遵守操作规程和规章制度;管理人员应强化管理,落实安全责任制,经常督促检查。

(4) 未进行质量控制检测

诊疗设备年久或更换部件和维、检修后, 末进行质量控制检测, 机器性能指

标发生变化,有可能在诊疗过程中使患者可能受到较大剂量的照射。

防治措施: 医院做好设备稳定性检测和状态检测, 使设备始终保持在最佳状态下工作。

(5) 工作人员业务技能不高

工作人员业务技能差,经验不足,操作不熟练等,致使患者和医生受到超剂量照射。

防治措施: 医院应定期组织辐射工作人员学习专业业务知识,不断提高业务水平。

(6) 非辐射公众成员受到超剂量照射

非辐射工作人员由于工作需要或误进入开机的机房内,长时间停留,造成超剂量照射。

防治措施: 医院警示标志正确张贴, 保证门灯联锁、门机联锁的有效性。

12.1 辐射安全与环境保护管理机构的设置

为认真贯彻执行《电离辐射防护与辐射安全基本标准》关于"营运管理"的要求及国家的有关规定,加强医院内部管理,医院成立了放射防护管理委员会,包括了1名组长,1名副组长,5名成员(详见附件八)。

宁远县人民医院 放射防护管理委员会 机构名称 职务或职称 管理人员 姓名 性别 学历 工作部门 专/兼职 男 本科 院长 院办 组长 欧阳旭俊 兼职 男 本科 副院长 院办 副组长 吴群辉 兼职 男 医务科长 周宏星 本科 院办 兼职 成员 本科 护理部主任 护理部 女 唐素平 兼职 成 员 男 本科 影像科主任 影像科 成 员 蒋荣旺 兼职 男 本科 影像科副主任 影像科 成 员 黄允 兼职 男 本科 影像科副主任 影像科 成员 谢群柏 兼职

表 12-1 辐射安全与环境保护管理机构及专(兼) 职管理人员表

根据《放射性同位素与射线装置安全许可管理办法(2008 修订)》,环境保护部令第3号第十六条要求:使用I类、II类、III类放射源,使用I类、II类射线装置的,应当设有专门的辐射安全与环境保护管理机构,或者至少有1名具有本科以上学历的技术人员专职负责辐射安全与环境保护管理工作。

从医院目前配置的辐射领导小组人员信息看,专兼职人员均为本科学历,有 一定的管理能力。目前医院的管理人员也能满足配置要求。

医院设置的辐射安全与环境保护管理机构职责包括:相关制度的制定、修改与完善;安排辐射工作人员参加学习培训;定期的辐射工作场所巡查和辐射事故应急演练;辐射工作人员的健康档案管理等。

12.1.1 职业人员的辐射安全与防护培训和再培训计划

(1) 职业人员的辐射安全与防护培训和再培训计划要求

根据环境保护部令第3号第十五条的规定:从事辐射工作的人员必须通过辐射安全和防护专业知识及相关法律法规的培训和考核。环境保护部令第18号第二十二条规定:取得辐射安全培训合格证书的人员,应当每四年接受一次再培训。

辐射安全再培训包括新颁布的相关法律、法规和辐射安全与防护专业标准、技术规范,以及辐射事故案例分析与经验反馈等内容。

(2) 辐射工作人员的配置及培训情况

为满足医院放射工作和安全的需要,医院根据要求配置相应的辐射工作人员, 目前医院已有的工作人员情况见下表 12-2。

表 12-2 现有辐射工作人员配置情况

序号	姓名	性别	学历	职称	 放射工作人员证号
			原有辐射	· 射工作人员	
1	黄允	男	本科	主任医师	医师
2	谢群柏	男	本科	副主任医师(DSA)	医师
3	唐建文	男	本科	副主任医师	医师
4	柏凌清	男	本科	主治医师	医师
5	徐胜华	男	本科	主治医师	医师
6	欧阳英	女	本科	主治医师	医师
7	李文华	男	本科	医师	医师
8	颜博	男	本科	医师	医师
9	祝庭	男	本科	医师	医师
10	欧阳振华	男	本科	医师(DSA)	医师
11	汪加余	男	专科	医师	医师
12	欧阳群志	男	本科	医师	医师
13	李龙	男	专科	医师	医师
14	张帆	男	本科	医师	医师
15	张明权	男	专科	技师	医师
16	杨彦婷	女	本科	技师	医师
17	王恒舟	男	专科	技师	医师
18	樊勇	男	专科	技师	医师
19	许石林	男	专科	技师(DSA)	医师
20	欧阳业	男	专科	技师	医师

续表 12 辐射安全管理

21	徐正胤	男	专科	技师	医师
22	李微君	女	专科	技师	医师
23	欧阳素娟	女	专科	技师	医师
24	郑世民	男	专科	技师	医师
拟新增工作人员情况					
1	黄艳	女	本科	技师	
2	郑春芳	女	大专	主管护师(DSA 护士)	
3	周美清	女	本科	DSA 主治医师	

由上表可知,医院目前配置放射工作人员共 24 人,基本满足现有放射设备的运行要求。根据调查,全部人员均已进行辐射安全与防护培训,详细情况见附件六。从人员配备上来看,已从事负责的辐射工作人员具有一定的辐射安全防护基本知识和技能,为预防放射事故的发生有一定的防护意识和应急能力,基本能满足现有射线装置的操作要求。

12.1.2 辐射工作人员的健康管理及个人剂量监测管理

对已经从事放射工作的职业人员进行的经常性医学检查,按照《辐射工作人员健康标准》的规定执行,医院应为辐射工作人员建立个人健康档案,档案中详细记录历次医学检查的结构及其评价处理意见,并妥善长期保存。

根据环境保护部令第3号、环境保护部令第18号中对工作人员个人剂量的要求,医院应为每名工作人员配置个人剂量计,定期组织工作人员进行个人剂量监测,发现个人剂量监测结果异常的,应当立即核实和调查,并将有关情况及时报告辐射安全许可证发证机关。医院还应安排专人负责个人剂量监测管理,建立了辐射工作人员个人剂量档案。包括个人基本信息、工作岗位、剂量监测结果等材料。根据中华人民共和国卫生部令第55号《放射工作人员职业健康管理办法》(2007年11月1日)规定,建立并终生保存个人剂量监测档案。辐射工作人员个人剂量检测报告见附件工,体检报告见附件七。

由附件可以看出,医院为辐射工作人员配置了个人剂量计,根据医院提供资料,目前其建立了以一个季度(90 天)为测度周期的个人剂量检验报告,并保存好检验报告,由个人剂量检测报告可以看出,工作人员个人剂量均未出现超出本评价提出

的剂量约束限值;另外,由体检报告可知,医院放射工作人员均鉴定为可以继续从 事原放射工作。

12.2 辐射安全管理规章制度

为保障放射源及射线装置正常运行时周围环境的安全,确保公众、操作人员避免遭受意外照射和潜在照射,医院在不断总结完善近年来核技术应用方面的经验,针对辐射设备情况和预期工作情况初步制定了以下管理制度(详见附件九):

《放射事故应急救援预案》、《放射科岗位职责和各级人员职责》、《放射工作场所放射卫生监测及评价制度》、《放射工作人员职业健康监护管理制度》、《放射防护管理制度》、《螺旋 CT 操作规程》、《X 线机操作规程》、《DSA 操作规程及流程》。上述管理制度的操作规程只能满足医院目前的辐射工作,须按照国务院令第 449 号(2005)《放射性同位素与射线装置安全与防护条例》、国家环境保护部令第 3 号(2008)《放射性同位素与射线装置安全许可管理办法》等现行要求修改,全面完善和健全各项规章制度,并补充以下规章制度:

- (1) 《介入中心工作制度》
- (2)《介入中心受访者防护制度》

医院应在今后工作中,不断总结经验,根据实际情况,加以完善和补充,并确保各项制度的落实。应根据环境保护管理部门对辐射环境管理的要求对相关内容进行补充和修改。

为完善医院的辐射管理制度,按照《电离辐射防护与辐射源安全基本标准》中 关于"营运管理"的要求,减少人为因素导致人员意外照射事故的发生,对本项目的 辐射环境管理提出如下要求:

- ①依据《中华人民共和国放射性污染防治法》第二十八条和《放射性同位素与射线装置安全和防护条例》之规定,该医院必须向环保部门申请办理安全许可证等相关环保手续。
- ②明确辐射安全防护工作领导管理小组的职责:设立兼职或专职的安全负责人,负责整个公司的辐射防护与安全工作。建立辐射防护安全防护管理制度,履行放射防护职责,确保放射防护可靠性,维护放射工作人员和周围公众成员的权益,尽可能避免事故的发生。

- ③每年应至少进行一次辐射环境监测,建立监测技术档案,医院工作人员应持证上岗,定期进行辐射防护知识和法规知识的培训和安全教育,检查和评估工作人员的个人剂量,建立个人剂量档案。对个人剂量超过或接近管理目标的辐射工作人员应暂离岗位,并在今后的工作中增加监测频率。对辐射工作人员每两年进行身体健康体检并形成制度。进入机房的工作人员佩带个人剂量报警仪,记录个人所受的射线剂量。
- ④安装、维修或者更换与辐射源有关部件的设备,应当向有关部门申请,进行 防护监测验收,确定合格后方可启用。以杜绝放射事故的发生。
- ⑤制定事故状态下的应急处理计划,其内容包括事故的报告,事故区域的封闭,事故的调查和处理,及工作人员的受照剂量估算和医学处理等。
- ⑥凡需增加或拆除现有辐射设施和设备,应预先向环境保护主管部门提出申请,在重新监测评价后,方可进行。
- ⑦定期检查机房的报警装置系统、防护仪表和 X 射线输出剂量误差,发现问题及时解决。
- ⑧各项规章制度、操作规程必须齐全,并张贴上墙; 所有的放射工作场所均必须有电离辐射警示标志,各机房门屏蔽门上方还必须要有工作指示灯。警告标志的张贴必须规范。
- ⑨医院辐射工作人员必须定期经过辐射工作安全防护培训,培训合格并取得辐射工作安全防护培训合格证方可上岗;操作人员必须遵守各项操作规程,检查仪器安全并做好当班记录,严格执行交接班制度,发现异常及时处理。

医院除以上已有的防护措施外,还应根据各科室的具体情况,依据《放射性同位素与射线装置安全和防护管理办法》《环境保护部令 第 18 号》的规定,射线装置工作场所辐射安全和防护增加如下措施:

- ①射线装置的使用场所,应当具有防止误操作、防止工作人员和公众受到意外 照射的安全措施。 射线装置应当设置明显的放射性标识和中文警示说明。
- ②使用射线装置的场所,应当按照国家有关规定采取有效措施,防止运行故障,并避免故障导致次生危害。
 - ③建设项目竣工环境保护验收涉及的辐射监测,由使用射线装置的单位委托经

环境保护主管部门批准的有相应资质的辐射环境监测机构进行。

- ④当加强对本单位与射线装置安全和防护状况的日常检查。发现安全隐患的,应当立即整改;安全隐患有可能威胁到人员安全或者有可能造成环境污染的,应当立即停止辐射作业并报告发放辐射安全许可证的环境保护主管部门(以下简称"发证机关"),经发证机关检查核实安全隐患消除后,方可恢复正常作业。
- ⑤ 对本单位的射线装置的安全和防护状况进行年度评估,并于每年1月31日前向发证机关提交上一年度的评估报告。

安全和防护状况年度评估报告应当包括下列内容:

- A.辐射安全和防护设施的运行与维护情况;
- B.辐射安全和防护制度及措施的制定与落实情况;
- C.辐射工作人员变动及接受辐射安全和防护知识教育培训(以下简称"辐射安全培训")情况;
 - D.射线装置台账:
 - E.场所辐射环境监测和个人剂量监测情况及监测数据:
 - F.辐射事故及应急响应情况:
 - G.核技术利用项目新建、改建、扩建和退役情况:
 - H.存在的安全隐患及其整改情况;
 - I.其他有关法律、法规规定的落实情况。

年度评估发现安全隐患的,应当立即整改。

⑥医院在依法被撤销、依法解散、依法破产或者因其他原因终止前,应当确保 环境辐射安全,妥善实施辐射工作场所或者设备的退役,并承担退役完成前所有的 安全责任。

12.3 辐射监测

根据《放射性同位素与射线装置放射安全和防护条例》(国务院第 449 号令) 等相关法规和标准,必须对射线类装置使用单位进行个人剂量监测、工作场所监测、 场所外的环境监测,开展常规的防护监测工作。

医院必须配备相应的监测仪器,或委托有资质的单位定期对医院使用的各射线 装置机房周围环境进行监测,按规定要求开展各项目监测,做好监测记录,存档备

查。辐射监测内容包括个人剂量与工作场所外环境的监测。

(1) 个人剂量监测

对辐射工作人员进行个人照射累积剂量监测。要求辐射工作人员在工作时必须佩戴个人剂量计,并将个人剂量结果存入档案。个人剂量监测应由具有个人剂量检测资质的单位进行。个人照射累积剂量每3个月为一监测周期,如发现异常可加密监测频率。

(2) 工作场所内外环境监测

根据国家规定每1~2年接受辐射防护管理部门对工作场所周围环境进行常规监测,发现问题及时整改。监测资料存档。

① 验收监测

设备安装到位后,应委托有资质的单位进行验收监测。若发现问题,及时整改,直到合格为止。

② 日常监测(有资质的单位)

监测频率:每年一次;

监测因子:工作场所周围区域剂量当量率。

监测范围:机房防护门及缝隙处,电缆及管道的出入口,控制室,操作台等;以及机房屏蔽墙四周。

监测数据作为医院的管理依据。

医院应自行配备 X-γ剂量率测量仪(定期进行计量检定),对射线装置机房内及机房四周环境进行监测。发现问题及时整改。根据现场踏勘及调查情况,医院每年委托相关单位进行辐射监测,监测数据每年年底向市环境保护局和省环境保护厅上报备案。医院自行的日常监测要求如下表 12-3 所示。

监测项目 监测地点 监测频率 限值要求 外照射剂量 个人剂量 每个季度 根据评价要求 工作场所 周围剂量当量率 一年一次 参照湖南省环境地表γ辐射剂量率 射线装置机房四周及顶棚墙 周围剂量当量率 一年一次 $2.5\mu Sv/h$ 体、防护门外 30cm 处

表 12-3 医院常规监测内容一览表

各个射线装置机房	门机联锁、工作指 示灯、警示标识	毎月自检	标准要求
各个射线装置		每年委托检测 1次,自检1~2 次	

12.4 医院辐射防护符合项分析

根据环境保护部令第 3 号、环境保护部令第 18 号对使用 II 类射线装置要求及医院目前实际筹备计划,做出如下符合项评价,见表 12-4.

表 12-4 医院从事辐射活动能力评价

应具备条件	医院应落实的情况	符合情况
从事放射工作的人员必须通过辐射安全和防护专业知识及相关法律法规的培训和考核。单位应当有1名具有大专以上学历的技术人员专职或者兼职负责辐射安全与环境保护管理工作。	现有放射工作人员全部参加了辐射安全和防护专业知识及相关法律法规的培训,且考核合格。放射管理人员有1名具有大专以上学历的技术人员专职或者兼职负责;新增辐射工作人员应在上岗前落实培训及考核。	基本符合
射线装置使用场所有防止误操作、防止工作人员和公众受到意外照射的安全措施。	应设置门灯联动装置,机房外醒目处设置 电离辐射警示标志以及工作状态指示灯, 待落实后方可开展辐射工作。	符合
配备与辐射类型和辐射水平相适应的防护 用品和监测仪器,包括个人剂量计。	专职放射工作人员应配备个人剂量计;放射工作人员及病人配备一定的防护用品, 受检者不必照射的部位应配备相应的防护 用品。	符合
有健全的操作规程、岗位职责、辐射防护 和安全保卫制度、设备检修维护制度、射 线置装使用登记制度、人员培训计划、监	己制定有相关制度。	符合
有完善的辐射事故应急措施。	已制定《辐射事故应急预案》,并定期演练	符合

由上表可知,医院从事辐射活动的能力符合评价要求。

12.5 辐射事故应急预案

12.5.1 事故应急培训演习计划

1、事故应急演练: 完善的预案、周到的准备和准确的事故处理必须依靠定期的 应急演练来加以巩固和提高,从而真正发生时能够做到沉着应对、科学处置。组织

应急演练应注意以下几个方面。

- (1) 制定周密的演练方案,明确演练内容、目的、时间、地点、参演人员等。
- (2)进行合理的人员分工。成立演练领导组、工作组、保障组等机构,进行角色分工,明确人员职责。
 - (3) 做好充分的演练准备,维护仪器设备,配齐物资器材,找好演练场地。
- (4) 开展认真的实战演练,按照事先预定的方案和程序,有条不紊的进行,演练过程中除非发生特殊情况,否则尽量不要随意中断。若出现问题,演练完毕后再进行总结。
- (5)做好完整的总结归纳,演练完毕后要及时进行归纳总结,对于演练过程中 出现的问题要认真分析,并加以改正,成功的经验要继续保持。
- **2、应急响应准备:**包括建立辐射事故应急值班制度、开展人员培训、配备必要的应急物资和器材。
- (1)辐射事故应急办公室应建立完善的辐射事故应急预警机制,及时收集、分析辐射事故相关信息,协调下设小组人员开展辐射事故应急准备工作,定期开展事故应急演练,提高应急处置能力。
- (2) 定期就辐射安全理论,辐射事故应急预案、程序和处置措施,以及应急监测技术等内容组织学习,必要时进行考核,以达到培训效果。
- (3)根据医院核技术利用情况,可能发生的事故级别,做好事故应急装备的准备工作。主要包括交通、通讯、污染控制盒安全防护等方面的物资和器材,具体见表 12-5。

表 12-5	辐射事故应急物资和器材	
14 14-5	佃게 尹叹应心彻贝仰的们	

器材或物资类别	名称及数量	维护保养要求		
监测仪器	个人剂量报警仪若干	定期开展维护保养和计量检 定,保证仪器设备完好		
通讯工具	手持对讲机或移动手机若干	定期充电、检查,保证完好		
取证工具	数码照相机、摄像机、测距仪等	定期充电、检查,保证完好		
警戒设备	电离辐射警告标志、警示灯等	保持干净、完好		
人员防护设备	防辐射工作服、防护眼镜、手套(乳胶或纱 棉)、口罩	保持干净、完好		

12.5.2 事故应急处理措施

辐射事故一旦发生,应立即采取以下措施进行处理,并根据事故情况启动应急预案。主要应急处理措施如下:

- ①DSA 等 X 射线类装置射线无高压输入时即停止发射射线,因此处理此类事故的首要一条就是切断电源,切断电源可以停止照射;
- ②立即撤离有关工作人员,封锁现场,控制事故源,切断一切可能扩大事故范围的环节,防止事故扩大和蔓延;对可能受伤的人员,立即采取暂时隔离和应急救援措施,在采取有效个人防护措施的情况下组织人员控制事故现场,并根据需要实施医学检查和医学处理。
- ③如因射线装置输出量异常发生人员受到异常照射的事故,应及时检修射线装置,并进行输出量计量校准。保存控制器上的照射记录,不得随意更改,以便事后对受照人员进行受照剂量估算:
- ④若事故后经检查为机器出现故障,应通知厂家立即派专业技术人员到现场排除故障。医院不能擅自处理:
- ⑤发生辐射事故后,根据受照情况,应迅速安排事故受照人员的医学检查和医学监护。并在2小时内向医院领导及有关行政主管部门上报。并配合有关部门进行调查,查找事故原因,做好相关防范措施。
- ⑥医院应根据人员受照剂量,判定事故类型和级别,提出控制措施及救治方案,迅速安排受照人员接受医学检查、救治和医学监护。具体处理方法按《核与放射事故干预及医学处理原则》(GBZ113-2006)和《辐射损伤医学处理规范》(卫生部、国防科委文件卫法监发[2002]133号)进行。

12.5.3 应急报告程序

一般报告程序为:发现者报告给医院辐射事故应急工作小组成员,由其向市公安局、市环保局,并同时向省环保厅报告,设备被损应同时向公安机关报告,造成人员受到超剂量照射应同时向卫生部门报告。各部门联系方式如下:

辐射安全管理办公室(医务科)电话: 0746-7325060

院总值班室电话: 0746-7325035

市环保局电话: 0746-8323354

省环境保护厅电话: 0731-85698110

宁远县人民医院制定的应急预案,内容详实,可操作性较强,能够满足在发生辐射安全事故时的应急处理的需要。同时,建设单位在日常加强事故演习,加强医院人员的安全文化素养培植,使树立较强的安全意识,减少人为因素导致的意外事故的发生率,确保放射防护可靠性,维护辐射工作人员和周围公众的权益。

综上所述,评价认为,宁远县人民医院辐射环境管理满足《电离辐射防护与辐射安全基本标准》(GB18871-2002)、《放射性同位素与射线装置安全许可管理办法(2008 修订)》等相关标准的要求。

表 12-6 环境保护验收一览表					
序号	验收内容	验收要求	要求		
1	环境管理制 度、应急措施	成立专门的辐射领导机构,制定相应的规章制度和事故应急 预案	环境保护部令第3号		
2	人员要求	管理人员和辐射工作人员持证上岗,4年进行1次复训	环境保护部令第3 号、18号		
3		本项目辐射工作人员依托现有辐射工作人员 3 名,新增 3 名。 (要求至少有 1 名医用物理人员, 1 名具有本科以上学历的 技术人员,有 1 名具有大专以上学历的技术人员)	国家环境保护总局令第31号		
4	辐射安全防 护措施	1、辐射防护监测设备和个人防护用品按表 10-2 要求进行配置 2、要求设置门灯联动装置,门上设置有声、光报警; 机房外醒目处张贴电离辐射警示标志以及工作状态指示灯; 通道悬挂走向指示牌 3、辐射机房在控制室与治疗室之前应设观察窗与对讲机。 4、射线机房内设置通风装置,保持良好的通风,机房内不得堆放无关杂物 5、门与墙缝隙搭接满足要求,有效防止射线泄漏射 6、制度上墙	GBZ130-2013 GBZ18871-2002		
5	日 辐射监测 日本	1、每1年接受辐射防护管理部门对工作场所周围环境进行常规监测,年度评估 2、医院应每季度对工作人员进行个人计量监测,每2年进行放射人员健康体检,并将资料存档管理	国家环境保护总局令第31号		
6	机房面积及最小单边长	DSA 机房: ≥30m²,最小单边长 4.5m(参考)	GBZ130-2013		
7	电离辐射	限制 1、DSA 介入医生年有效剂量≤4mSv	GB18871-2002、及 环评批复		
		墙体外 剂量率 控制 距离机房墙外 30cm 处的周围剂量当量率 ≤2.5μSv/h	GB18871-2002 GBZ130-2013		
8	废气	射线机房内均设置机械动力通风装置	GBZ130-2013		

13.1 结论

13.1.1 项目概况

医院位于宁远县舜陵镇重华北路 1 号,近年来,随着医疗服务对象的扩大及人民群众对医疗服务质量要求的提高,为提高医院对疾病诊疗能力和医院竞争力,医院拟投资 850 万在外科楼一楼进行核技术利用改扩建项目。本项目包含 1 台 DSA(II 类射线装置)。通过开展对本项目的分析、对周围环境质量现状的调查以及项目的主要污染物对环境的影响分析等工作,得出如下结论。

13.1.2 实践正当性分析

医院射线装置对受电离辐射照射的个人和社会所带来的利益远大于其引起的辐射危害,项目符合《电离辐射防护与辐射源安全基本标准》(GB18871-2002)中辐射防护"实践的正当性"的原则与要求。

13.1.3 产业政策符合性分析

项目投入使用的 DSA 为疾病诊断、寻找病灶部位、制订治疗方案及治疗疾病提供了科学依据和手段。项目在加强管理后均满足相关国家法律、法规和标准的要求,不会给所在区域带来环境压力。同时,本项目属于中华人民共和国国家发展和改革委员会令第9号《产业结构调整指导目录(2011年)》(2013修正)鼓励类鼓励类中新型医用诊断医疗仪器设备、微创外科和介入治疗装备及器械、医疗急救及移动式医疗装备、康复工程技术装置、家用医疗器械、新型计划生育器具(第三代宫内节育器)、新型医用材料、人工器官及关键元器件的开发和生产,数字化医学影像产品及医疗信息技术的开发与应用。项目符合国家相关法律法规和政策的规定,符合国家产业政策。

13.1.4 选址可行性及布局合理性分析

1、选址可行性分析

根据现状监测结果,本项目场址辐射环境质量现状良好,机房选址均远离医院内 及周围环境敏感点,有利于辐射防护。项目营运期产生的电离辐射、废气均得到 有效治理,达标排放对环境影响小。从环境保护角度分析,项目选址可行。

续表 13 结论与建议

2、布局合理性分析

本项目布局在发挥核技术利用扩建项目诊疗疾病的优势的前提下,也便于工作人员及病人的辐射防护工作及就医流程的简化。医院按控制区、监督区要求进行了布置。从环境保护角度分析,医院辐射工作场所布局可行。

13.1.5 环境影响分析结论

(1) 机房使用面积

射线装置机房的使用面积均满足标准要求。

(2) 墙体屏蔽的辐射防护

本项目医用 X 射线装置机房屏蔽设计情况按照本次环评建议值进行建设,通过预测结果,各机房的四周墙体、天棚、防护门和观察窗的厚度能满足要求,能有效保证辐射工作场所的安全。

(3) 剂量估算

通过核算,从事本项目的辐射工作人员和公众人员的年附加有效剂量均满足本环评的剂量约束限值要求(介入治疗医生: 4mSv/a, 其他辐射工作人员: 2mSv/a, 公众人员: 0.1mSv/a)符合《电离辐射防护与辐射源安全基本标准》(GB18871-2002)和《医用 X 射线诊断放射防护要求》(GBZ130-2013)相关标准的要求。

13.1.6 辐射防护与安全措施

(1) 辐射防护措施

- ①各机房各墙体厚度按照环评的要求进行建设,防护门和观察窗的生产应由有生产资质的厂家承担。
- ②按照本评价提出的要求,设置相应的联锁装置、紧急停机、视频监视系统工作状态指示灯、电离辐射警示标志灯等。
 - ③机房的过墙电缆线、管线孔以"U"型或"S"型设置,并保证机房良好的通风。
 - ④根据需要为医生、病人配置铅围裙、铅眼镜等防护用品。

(2) 放射性"三废"污染防治措施

续表 13 结论与建议

本项目不产生放射性固废和废水,射线装置机房均设置有机械通风系统,保证机房内电离产生的臭氧和氮氧化物迅速稀释扩散,本次环评要求通风管网布置从非限制区到监督区到控制区,即从低浓度到高浓度收集废气然后排出。

13.1.7 辐射与环境保护管理

医院成立了放射防护管理委员会,各项规章制度、操作规程、应急处理措施健全、具有可操作性,但仍应加强日常应急响应的准备工作及应急演练。医院应严格执行各项规章制度执行,辐射工作人员在工作时必须佩戴个人剂量计,定期进行检查并安排健康体检。医院还应在今后的工作中,不断完善相关管理制度,加强管理,杜绝辐射事故的发生。

综上所述,宁远县人民医院切实按照相关要求进行建设后,医院射线装置运行时对周围环境产生的辐射影响符合环境保护的要求;该项目的辐射防护安全措施可行;规章制度基本健全;该项目对环境的辐射影响是可接受的。宁远县人民医院在采取本环评提出的各项环境保护及污染防治措施后,从环境保护的角度来看,本环评认为该建设项目是可行的。

续表 13 结论与建议

13.2 要求

- 1、根据《电离辐射防护与辐射源安全基本标准》(GB18871-2002)第 B1.1 款的相关规定, 医院应每一季度定期对从事辐射诊疗的工作人员进行个人剂量监测。
 - 2、医院拆除或更改环境保护设施,需得到环境保护部门批准后才可实施。
- 3、医院按照《放射性同位素与射线装置安全和防护条例》的要求,做好自主管理,制定工作场所和周围环境监测、防护性能监测等相关监测计划以及职业健康体检工作计划,并自购辐射检测设备,确保周围环境的辐射安全和职工健康。
- 4、在项目运行前,医院必须组织好放射工作人员岗位,并安排未参加辐射防护培训的工作人员及新增放射工作人员进行培训,培训合格者方可上岗。医院应安排人员参加环保行政主管部门或其他单位举办的辐射防护相关知识的培训学习,并进行4年一次复训。
- 5、负责 DSA 介入手术的医护人员应定期开展辐射 防护知识培训、职业健康体检。立刻配备个人剂量计,并按要求进行计量剂检测。按辐射工作人员进行管理。
 - 6、根据医院的实际情况和项目建设进展, 医院应进行验收手续。
- 7、医院应按照《放射性同位素与射线装置安全许可管理办法》中的相关规 定重新申领辐射安全许可证。

13.3 建议

- 1、医院在项目实施后,需要根据实际情况修改完善各项制度,并组织实施。
- 2、加强工作人员的辐射防护,工作人员应正确配戴个人剂量计。
- 3、医院应加强内部管理,合理使用医用 X 射线装置,明确管理职责,杜绝各类辐射事故的发生。医院应细化、完善各项管理制度,并认真落实,严格按照各项规章制度、操作规程执行。

表 14 审批

下一级环保部门预审意见:						
		公章				
经办人	年	月	日			
审批意见:						
		公章				
经办人	年	月	日			
	ı	/4	→			

附 录

附图

附图一 项目现场照片

附图二 项目所在地地理位置图

附图三 医院总平面布置图

附图四 DSA 机房平面布置图

附图五 机房所在楼层平面布置图

附件

附件一 授权委托书

附件二 现状监测质量保证单

附件三 《长沙市鹏悦环保工程有限公司监测报告》(鹏辐(监)【2017】191-02号)

附件四 辐射安全许可证正副本复印件

附件五 辐射防护领导小组文件

附件六 辐射防护相关管理制度

附件七 医院辐射工作人员培训证书

附件八 医院辐射工作人员个人剂量计检测报告

附件九 医院辐射工作者体检报告

附表

附表一 建设项目环评审批基础信息表